
Radare from A to Z

pancake // NN2015
@trufae

Introduction
● What is r2?
● How to use the shell
● Analyzing
● Debugging
● Patching
● ScriptingWhat Am I Doing Here?

Why Radare2?

● It’s free and opensource
● Runs everywhere (Windows, Mac, Linux, QNX, iOS, ..)
● Easy to script and extend with plugins
● Embeddable
● Grows fast
● Supports tons of file-formats
● Handles gazillions of architectures
● Easy to hack
● Commandline cowboy-friendly
● Great community and even better leader
● Collaborative

What’s Radare2?

● Reverse Engineering
○ Analyze Code/Data/..
○ Understanding Programs

● Low Level Debugging
○ Similar to olly
○ Multi-platform, and support for remote

● Forensics
○ File Systems
○ Memory Dumps

● Assembler/Disassembler
○ Several architectures
○ Multiplatform

Tools

Radare2 is composed by some core libraries and a set of
tools that use those libraries and plugins.

 radare2 r2pm rarun2 ragg2

 rabin2 radiff2 rax2 rahash2

 rasm2 rafind2 r2agent rasign2

History

Radare was born in 2006 as a forensic tool for performing
manual and interactive carving to recover some files from
disk or ram.

It grew quickly adding support for disassembler, debugger,
code analyzer, scripting, …

And then I decided to completely rewrite it to fix the
maintainance and monolithic design problems.

But First.. A Poll!
(who are you?)

Which is your main OS?

Do you know assembly?

How’s your UNIX foo?

Did you used r2 before?

Installation
(always use git)

PROTIP: Installing radare2
is recommended method to
use it.

How To Install Radare2

There are several binary distributions of radare2

● LiveCD
● OSX package.
● Windows Installer (and nightly builds)
● BSD || GNU/Linux (Gentoo, ArchLinux, Void, ..)
● Use the Cloud Web user interface
● Chat with the @r2bot on Telegram

Coming soon: PPA/Windows from Travis/AppVeyour

Installing from Git

$ git clone https://github.com/radare/radare2

$ cd radare2

$ sys/install.sh

or

$ sys/user.sh

https://github.com/radare/radare2

Package Management

$ r2pm -i radare2

$ rm -rf radare2

You can also install other programs, plugins and scripts
with it. It aims to ease the identify

Package Management

Some of the most interesting packages:

● Yara (2 / 3)
● RetDec decompiler (@nighterman)
● Unicorn - code emulator
● Native Python bindings
● Duktape (Embedded javascript)
● Radeco decompiler (@sushant94)
● Baleful (SkUaTeR)
● r2pipe apis for NodeJS, Python and Ruby
● Vala/Vapi/Valabind/Swig/Bokken/...

Basic
Commands

Seeking

Printing

Writing

Spawning an R2 Shell

The `r2` command is a symlink for `radare2`.

$ r2 - # alias for `radare2 malloc://1024`

$ r2 -- # open r2 without any file opened

$ r2 /bin/ls # open this file in r2

$ r2 -d ls # start debugging

Other Useful Command Line Flags

-h # get halp message

-a <arch> # specify architecture (RAsm Plugin name)

-b <bits> # specify 8, 16, 32, 64 register size in bits

-c <cmd> # run command

-i <script> # include/interpret script

-n # do not load rbin info

-L # list io plugins

In The Shell

Syntax of the commands:

> [repeat][command] [args] [@ tmpseek] [; ...]

> 3x # perform 3 hexdumps

> pd 3 @ entry0 # disasm 3 instructions at entrypoint

> x@rsp;pd@rip # show stack and code

The Internal Grep

As long as r2 is portable, it doesn’t depends on other
programs, so there are some basic unix commands, as well as
an internal grep/less.

> pd~call

> is~test

Flags and Calculations

Flags are used to specify a name for an offset.

Math expressions evaluate those names to retrieve the number.

> ? 1+1

> f foo = 1024

> ? foo+123

Printing Bytes

R2 is an block-based hexadecimal editor. Change the block
size with the ‘b’ command.

p8 print hexpairs

px print hexdump

pxw/pxq dword/qword dump

pxr print references

Structures

pf - define function signatures

Can load include files with the t command.

010 templates can be loaded using 010 python script.

Load the bin with r2 -nn to load the struct/headers
definitions of the target bin file.

Use pxa to visualize them in colorized hexdump.

Disassembling
(and printing bytes)

Disassembling is the “art”
of translating bytes into
meaningful instructions.

Disassembling Code

pd/pD - disassemble N bytes/instructions.

pi/pI - just print the instructions

pid - print address, bytes and instruction

pad - disassemble given hexpairs

pa - assemble instruction

Disassembling Code

> e asm.emu=true - emulates the code with esil and

> agv/agf. - render ascii art or graphviz graph

Seek History s- (undo) s+ (redo)

Use u and U keys to go back/forward in the visual seek
history.

rasm2

Disassembling and assembling code can be done with pa/pad or
using the rasm2 commandline tool.

$ rasm2 -a x86 -b 32 nop

$ rasm2 -a x86 -b 64 nop

(demo)

Binary Info
(parsing fileformats)

RBin detects file type and
parses the internal
structures to provide
symbolic and other
information.

RBin Information

$ rabin2 -s

> is

> fs symbols;f

Symbols Relocs Classes Entrypoints

Imports Strings Demangling Exports

Sections Libraries SourceLines ExtraInfo

RBin Information

All this info can be exported in JSON by appending a ‘j’.

(DEMO)

Scripting
(automation)

The art of automating
actions in r2 using your
favourite programming
language (or not).

Scripting

● Shellscript (batch mode)
○ Use ‘jq’ to parse json output
○ Send commands via stdin

● Bindings (full api)
○ Also supports Python, Java, ...

● Plugins
○ Loaded from home and system directories

● R2Pipe scripts
○ spawn/pipe/http/…
○ NodeJS / Python / Perl / Ruby / Rust / Go / Swift / …
○ Interpreted with ‘.’ command

Using R2Pipe For Automation

R2 providws a very basic interface to use it based on the
cmd() api call which accepta a steing with the command and
returns the output string.

$ pip install r2pipe

$ r2 -qi names.py /bin/ls

$ cat names.py

Analyzing Code
(and graphing)

Analyzing is the “art” of
understanding the purpose of
a sequence of instructions.

Analyzing From The Metal

R2 provides tools for analyzing code at different levels.

ae - emulates the instruction (microinstructions)

ao - provides information about the current opcode

afb - analyze the basic blocks

af - analyzes the function (or a2f)

ax - code/data references/calls

Analyzing the Whole Thing

Many people is used to the IDA way: load the bin, expect all
xrefs, functions and strings to magically appear in there.

R2 will not do this by default because it can be slow,
tedious, and 99% of the time we can solve the problem
quicker with direct and manual analysis.

Run `r2 -A` or use the ‘aa’ subcommands to achieve this.

Graphing Code

Functions can be rendered as an
ascii-art graph using the ‘ag’.

Enter visual mode using the V key

Then press V again to get the
graph view.

Signatures
(and graphing)

Signatures is the "art" of
identifying functions by
looking at byte patterns.

Signatures

aap - function preludes

z* - Zignatures! (supports FLIRT and r2’s own format)

$ r2 -A static-bin

> zg lebin > lebin.r2

BinDiffing
(and graphing)

Finding differences
between two binaries
looking for bugfixes.

Finding the Bugfix

(DEMO)

https://www.nowsecure.com/blog/2015/09/30/doctor-seven-osx-vulnerability/

Debugging
(and emulation)

R2 supports native
debugger for Linux, BSD,
XNU and Windows.

But there’s more!

First Steps

R2 is a low level debugger (not a source debugger).

It provides much more low level information than source
debuggers use to provide. Doesn’t competes with GDB/LLDB.

Basic Actions for a debugger are:

ds step db breakpoint dr show regs

dso step over dcu continue-until dx code-inject

dc continue dm memory-maps dd file-desc

Remote Debugging

R2 supports WINDBG, GDB and native remote protocols. But, as
long as r2 runs everywhere it is recommended to use it in
place.

ESIL

ESIL stands for Evaluable Strings Intermediate Language.

A forth-like language (stack based language) using comma as
a tokenizer and used for emulating and analyzing code.

Widely used for decrypting malware routines and analyzing
shellcodes and other payloads.

 mov eax, 33 => 33,eax,=

User Interface
● WebUI
● Bokken
● Visual Mode
● Visual Panels
● Commandline
● R2Pipe
● Colors!

Colors!

> e scr.color=true

> e scr.rgb=true

> e scr.truecolor=true

> e scr.utf8=true

> ecr # Random colors

> eco X # Select color palette

Visual Mode

Type V and then change the view with ‘p’ and ‘P’

Visual Panels

Press ‘!’ in the Visual mode

Web User Interface

Start the webserver with =h

Launch the browser with =H

See /m /p /t and /enyo

Bokken

Native Python/Gtk GUI

Binaries for Windows

Runs on OSX/Linux too

Author: Hugo Teso

Questions?

\o.

Thanks For Watching!

