
 Digging into 
radare2 for 

fun and profit
AvTokyo2017 // pancake



What’s Radare2?



What’s Radare2?
● 12 yo Free-Open-Source Project
● Reverse-Engineering Framework and Toolset
● Originally written by me (pancake)
● Growing community and contributors over time
● Switch from main/single dev to project leader and maintainer

● Release every 6 weeks
● Bumps +1.0 every year after r2con
● r2con happens in Barcelona (in 2017 we had 230 attendees this year)
● All talks are published in YouTube



Who Am I?
● Free Software enthusiast and Geek

○ Born in Barcelona, Catalonia
○ Wrote and maintain several free software tools
○ Participated at defcon CTF 3 years in a row
○ I enjoy drawing
○ Father

● Links
○ Check github and bitbucket on radare and trufae users
○ You can also find my profile in https://twitter.com/trufae 

● Currently working at NowSecure (Mobile Security Analyst, doing R+D)
○ Optimizing codecs in assembly for mips, arm and x86
○ Develop firmware for embedded devices for realtime traffic analysis in the highways.
○ Forensics mainly on Windows platforms
○ Instructor in courses related to programming and hacking

https://twitter.com/trufae


What Can It Do For You?
● Analyze Programs to understand what they are doing
● Identify strings in several encodings (chinese, korean, cyrilic..)
● Find References to strings using different techniques
● Carve memory dumps or firmwares for known magic
● Mount filesystems and parse partition tables
● Debug programs native or remotely via gdb, r2, frida, windbg,..
● Emulate parts of the program to decrypt blocks
● Use external decompilers or graphing tools
● Check differences between two binaries
● Play games like 2048 or r2wars!



Runs Everywhere!
● Many Operating Systems:

○ Windows, Linux, Mac, QNX, Solaris, NetBSD, FreeBSD, BeOS, Android, iOS, ….

● Many Architectures
○ x86, arm, mips, sparc, ppc, z80, 6502, 8051, avr, wasm, snes, java, dalvik, hppa, ... 

● Supports native debugger in most target arch/os pairs
● Also compiles to web-assembly and asm.js
● Can be used in local or remotely

(demo rasm2 -L rabin2 -L r2 -L)





Learning Curve
● Steep at first, but pleasant in long term.
● About 10 commands is all you need
● Orthogonality enables commands to be combined and extended
● About 2 weeks of daily use to get in touch

● Learning by doing
● A matter of having interest and dedication
● Different workflow compared to other tools
● It’s open-source! So rwx!



It’s Documented®
● Fully documented in C
● We have a collaborative book, based on r1 and
● Several blog posts (follow @radareorg on Twitter to catch more)
● Many talks in YouTube and Vimeo

○ All r2con 2016, 2017 videos are published

● Self documented by appending the ‘?’ to the commands
● UNIX Manual pages (man)
● Public IRC and Telegram channels with more than 800 users

https://twitter.com/radareorg

https://t.me/radare

https://twitter.com/radareorg
https://t.me/radare


Basic Commands
● Seeking

○ Relative / Absolute / Partial locations (s+0x10, s..10, s 10)
○ History (!, s!)
○ Blocksize (b, @!)

● Printing
○ Hexdump (px, pxr, pxa, prc, pxA, …)
○ Disasm different archs (pd, pD) @a:mips, e asm.arch
○ Decode structures (pf)
○ Checksums, entropy, statistics (p=, ph)

● Writing
○ Assemble new instructions (wa)
○ Strings in different encodings (w)
○ Hexpairs (wx)
○ Contents of files (wf)



Command Modifiers
Prefix

● [1-9]
○ Repeat command n times

● . (backtick)
○ Interpret the output of the command as r2

● “
○ Ignore special characters

● `
○ Insert the output of a command

● !
○ Shell escape

● $
○ Alias command

● \
○ Alias for =!

Suffix

● @
○ temporal seek

● |
○ system pipe

● ~
○ internal grep

● >
○ file redirect

● #
○ Comment

● ?
○ Show help

● j
○ Output in JSON



Demo



Mounting FileSystems and Searching Stuff
● Initially, radare started as a forensics tool.
● Find offset in disk for a file and vice-versa.
● Search patterns or known headers and dump results
● HFS, FAT, NTFS, EXT2, …
● Squash, jffs2 are wip and not yet working

● The ‘m’ command reads partition tables and mount filesystems.
○ Most plugins based on GRUB code. (GPL warning)
○ Also io and r2 filesystems (wip)



Demo



Parse Binary Headers
● Supports a large list of bin headers
● rabin2 -l
● Can parse malformed and fuzzed binaries
● Loads from disk or memory
● IO layer abstracts access to data
● Emulate a Virtual Address space
● r2 -nn
● rabin2 -H
● Parsing memory headers (oba, .!rabin2 -r)
● Extract resources, entitlements, ...



Demo



Analyze and Disassemble
Most beginners use to go for a generic analysis

● -A, aa, aaa, aaaa, aaaaa, aaaaaaaah!

But there are a lot of ways to tweak the analysis

● e??anal.

And several commands to do fine-grained analysis

● aac, aar, aae, aav, aab, ...

Emulation with ESIL is used in some commands.



Analyze and Disassemble
Listing functions

● afl

Listing basic blocks

● afb

Graphing them

● agf

Rename function

● afn

Analyzing a single opcode

● ao

Analyze single function

● af (e anal.hasnext)

Alternative analysis loop

● a2f

Autoname function

● afna



Analysis Options
Assume there’s more code

● anal.hasnext

Discover strings when analyzing

● anal.strings

When messing with non-executable regions as code

● anal.noncode

Analyze Jump-Tables

● anal.jmptbl



Demo



Print Data In Multiple Formats
By default uses the ‘b’ blocksize

Overview with zoom view, entropy, color boxes, instruction blocks, ...

● p?

Format string-like strings by parsing the memory at given address

● pf xxi foo bar cow @ addr



Demo



Debug And Emulate
R2 will bridge all debugger actions to the ESIL vm when open statically. Use -d to 
open the target file in debugger mode.

● r2 -d

Continue until given address

● dcu addr

Step into / step over

● ds, dso



Debug And Emulate
Support native and remote debugging engines.

● dbg:// winedbg:// gdb:// windbg:// qnx:// ..

Many low level features:

● Backsteps (Thanks Ren Kimura!)
● Memory snapshots
● Software/Hardware breakpoints
● Assisted debugging (emulation + debug)
● Tracing
● Filedescriptor manipulation



Rarun2 Profiles
Execution environment can be configured in:

● Textfile specified via r2 -r or dbg.profile
● Comma separated list of directives via dor or -R commandline flags

Allows to change gid, uid, chroot, chdir, environment, arguments, filedescriptors..

● Any directive value can be a string, a slurped file or output of a program

$ man rarun2



Print Data In Debugger
Show stack contents

● dbt - backtrace
● pxr@r:SP

Show local variables and their values

● afvd

Missing the colorbar?

● p=



Demo



Console Interface
● Mostly a command-line prompt
● Eventually a Visual mode
● Embedded web server (r2 -c=H)

Visual mode bind actions to keys 
instead of commands.

● Change view with pP”|=...
● Step with ‘s’, toggle bp, continue, ..
● Seek history
● Visual assembler
● Interactive Graphs



Graphical Interface
We can install most of them via r2pm (sorted by time)

● Gradare2 (simple gtk2/3 + vte ui)
● Ragui (unreleased)
● Bokken (unmaintained)
● Blessr2 (nodejs-blessed based UI)
● WebUIs (material, enyo, tiled, …)
● Radare2gui (.net for windows)
● Cutter (previously known as Iaito)
● ...



Demo



Easy To Modify and Improve
● Libraries

○ Default installation method done with symlinks
○ cd libr/* ; vim ; make; run

● Plugins
○ ./configure-plugins
○ r2pm

● Bindings
○ C API have bindings for Python, Perl, Ruby, Scheme, Haskell, …
○ Thanks to Valabind

● Scripting
○ Script with RLang using Python, C, or even Vala
○ Bindings automatically loaded if needed



r2pipe
Easiest way to automate r2

● Single api function: run a command, returns the output
● Supports lot of programming languages

Multiple communication channels

● Pipe
● Socket
● HTTP
● Native
● Spawn



Demo



Third Party Stuff
The project covers a huge 

● r2 can be extended with scripts, plugins, patches…
● Most of them available via r2pm, our package manager

○ Install everything by default in your home (unless -g is used)

● Decompilers, SMT Solvers, More disassemblers, tools, …
● Use r2pm -s to list them all

 

(DEMO)



r2frida
● Frida is a hooking engine, supports injecting javascript to interact with a 

running process in local or remotely.
○ It comes with a REPL, a tracer, process list, etc..

● Radare2 can be used as a frontend for Frida
○ Uses the power of the IO plugins
○ Access functionality via io->system
○ Using the \ or =! Command

● There’s also r2preload in rarun2 to inject into a process using self://



WineDBG
● Wine is not a Windows Emulator
● Comes with winedbg, a very rustic commandline low level debugger
● The io.winedbg plugin allows to interface with it
● Similar to the bochs:// one
● Allows to debug window programs with r2 on Linux and Mac platforms.
● In early stage of development

○ Lot of potential here



Other 3rd Party Debugger Backends
● GDB / LLDB

○ Debug kernels via the gdbserver embedded in qemu, vmware, vbox, ..
○ Apple’s debugserver, GNU’s gdbserver
○ AVR emulator and jtag

● WINDBG
○ Connect to a windbg server

● WINEDBG
○ Debug Windows programs on wine (Linux, Mac, ..)

● QNX
○ The debugserver used in automobile

● Bochs
○ X86 CPU debugger



Demo



しつもんがありますか？
(Questions?)



Thanks For Watching!


