
RE-Learning w/R2

@pancake@infosec.exchange // NN2024

mailto:pancake@infosec.exchange

Who Am I?

Sergi Àlvarez aka pancake

● Mobile Security Research Engineer at NowSecure
● Author and leader of the Radare project
● Free Software enthusiast and developer

Target Audience

● Newcomers to the Low Level Reigns
● Commandline cowboys
● Malware analysts
● Unix Enthusiasts

Poll

First of all, let’s understand better the audience:

● Do you know and use radare2?
● Can you read assembly?
● What about Reverse Engineering?
● Toolkit overview

Contents

● Setup r2 and get comfortable in the shell
● Analyzing binaries, from headers to the code
● Scripting tasks in Python and Javascript
● Popular extensions and plugins
● Dynamic Instrumentation Debugging / Tracing
● Learn more (chats + books)

Disclaimer

Take these slides as a reference!

● Focus on practical examples
● Get yourself fluent and comfortable in the shell

What’s
radare2

—

The

Libre Software

Reversing Framework

History

Back in 2006..

● I was a forensic analyst
○ And had to recover some deleted files from a mac
○ I was not allowed to use company software

● So I wrote my own thing
○ A portable unix-centric hexeditor for 64bit seeks

● 18 years after that it’s still kicking

In short

Libre RE Framework with UNIX philosophy in mind.

● Purely written in C, portability and control matters
○ Very extensible through plugins and scripts

● Added disassembler, binary parser, analyser
○ Debugger, Emulator, Scripting, GUI

● One-man project most of its lifetime

Installation

● Always from git or latest release.

$ git clone https://github.com/radareorg/radare2

$ radare2/sys/install.sh

https://rada.re

https://github.com/radareorg/radare2
https://rada.re

Iaito

The official GUI (but there are more)

● Runs on BSD, Haiku, Linux, macOS, Windows

Check the release page or use flatpak

https://github.com/radareorg/iaito

Exercise

Get your workshop environment ready!

● Install radare2 from git

Introduction
To The Shell

—

● The Magic Of The
Commandline

Commandline

Main way to interact with radare2 is through the shell

● Basic posix shell commands (ls, cd, rm, cat, ..)

● Learning the commands and syntax matters!
● Subcommands just add a letter after the root one
● Useful for scripting and automation
● Doing things faster than using the mouse

Basic Commands

s = seek (s 0x/s..)

p = print (px / pd)

f = flags

i = info

w = write

q = quit

a = analysis

V = visual/panels

e = eval config

? = help/math

! = system shell

d = debugger

Command Operators

| = redirect to process (like in posix shell)

> = redirect to file ($file are internal)

~ = internal grep (indent json, xml, code, filter words)

= comment

; = command separator

? = show command help

Command Suffixes

● ? = help message
● j = json
● * = r2 commands
● q = quiet
● , = comma separated values
● k = key-value

Command Prefixes

● (number) = repeat a command N times
● ‘ = single quote, to avoid parsing special characters
● ?t = calculate execution time
● : = io command
● `` = replace command output inline
● . = run script

Iterator Operator

Useful to run commands in different items

● Functions, flags, registers, symbols, basic blocks, ..

● @ - temporal seek
● @@ - repeat command on different places
● @@@ - advanced repeat actions

See @? @@? @@@? for help

Useful Commands

Combine and learn new commands every day!

● Recursive Help: ?*
● JSON indent (json path queries like jq): ~{}
● HUD filtering: ~…
● Analyse all symbols: af @@ sym*
● Set, list flags: f
● Comments: CC

Commandline Exercise

● Open a file (/bin/ls ;D)
● Dump bytes and disassemble
● Seek to different addresses
● Analyze code / list and count functions
● Use tab to autocomplete flags
● Enter visual mode

IO
—

● The lowest layer in
r2, where everything
becomes a file.

IO Plugins

List of uri handlers exposed by the IO plugins:

$ r2 -L

You can find more plugins if you need them

$ r2pm -s …

IO Primitives

Those plugins provide the following callbacks

● Open/close = handle uri :// to select plugin
● Seek = used to move around, 64 bit offsets, getsize
● Read/write = basic IO operations
● System = run a command return string with result

Maps and File Desriptors

Use o and om commands to list files and their maps

● Necessary to configure the memory layout

Run IO Commands

IO Plugins expose a callback to run commands
through the : prefix from the core shell.

● Used to expose custom functionality
○ Filesystems
○ Debugger
○ Binary parsing
○ ..

Searching Patterns

The / command is used to search stuff

● / - text
● /x - byte patterns (with binary mask?)
● /a - assembly code
● /c - cryptographic materials
● /m - magic headers
● /z - find strings

Exercise

Create your custom configuration file in your home!

● r2 -H R2_RCFILE
● Select a theme with eco
● Change scr. and asm. options

Structured
Binary Data

—

Files with Executable
Code Structured with
Headers and Metadata

Binary Formats

The list of file formats supported is very large:

$ rabin2 -L

● ELF, MACHO, PE, COFF, NE
● DYLDCACHE, KERNELCACHE
● CLASS,DEX,LUA,PYC
● GB, NES, 3DS, SMS, SMD, XBE, Z64, NSO
● ..

Parsing Headers

Executables and libraries store information needed by
the operating system to load and execute them.

● Sections and segments
● Symbols, imports and exports
● Entrypoints, constructors / destructors
● Strings, Libraries / Dependencies

$ rabin2 -H (ih)

Libraries

On linux we use to run ldd to see which libraries a
program is using.

In r2 we can use il, which is portable and doesn’t
have code execution risks.

Sections vs Segments

Rabin2 unifies the concepts for simplicity. Other tools
just have different names and commands for each file
format.

iS vs iSS

● Sections are only needed for static analysis tools
● Segments is what the runtime linker needs.
● Check with * and om.

Strings

Plain text stored in the read-only sections of the binary

● Sometimes compilers put code in rw sections
● Eventually they are inside unmapped headers
● Sometimes the text is generated with code
● Or maybe it is encoded (base64, rot13, ..)

$ rabin2 -z /bin/ls

Exporting binary data as script

Using the -r flag to create an r2 script

● This works across all tools in r2land
● Under the r2 commands use the * suffix

Commands inside r2

R2 is the tool that unifies all the other tools.

● R2 uses RCore which links against RBin, RArch,..

The rabin2 functionalities are implemented under the
i command.

$ rabin2 -z == iz, -zz = izz, …

● Check the shell

Decoding
Instructions

—

● Analyzing program
code, control flow
graphs, string
references, ..

Decoding

Different representations of the same

● Zeros and Ones (Machine Code)
● Bytes in Hexadecimal (octal was more readable)
● Plaintext Assembly
● Pseudo Disassembly
● Intermediate Representation (ESIL for r2)

Supported Architectures

$ rasm2 -L

Note that arch plugins can optionally provide

● ESIL representation for emulation
● Encoding (assembler) support
● Different CPU models

Visual Instruction Decoding

● Vd1

ESIL

Evaluable Strings Intermediate Language

● Designed by and for radare2
● Like FORTH, but using commas instead of spaces
● Expresses the instruction behaviour
● Simple to parse, fast to execute

mov eax, 33 => 33,eax,:=

Disassembler Options

> e asm.

Enable emulation for computed references

● asm.describe
● asm.emu/emu.str

Graphs

Control Flow Graph, gives use a good overview of the
function logic.

● agf

Formats: ascii art, graphviz, mermaid, ..

Exercise

● Open /bin/sleep with -n and -w
● Use o and om to see the differences
● Patch the entrypoint with a ret

○ Advanced: modify the default behaviour
● radiff2 to understand the patch we did
● Execute the patched program

Uplifting To
High Level
Languages

—

● Retrieving a high
level representation
of the underlying
assembly code

Analysis

r2 -A = aa / r2 -AA = aaa

● Functions / BB / Ops
○ afl , afb , ao

● Different analysis: aa?
● Options: e anal.

Use them wisely

● Default is not always the best

Decompilation

The art of creating high level representations of the
assembly code, aka, the inverse step of compilation.

● Assumptions to fill the gaps with the info we miss

Pseudo Decompilation with pdc

Native to r2, works on all archs

● Enables asm.pseudo
● Prints each basic block with labels and gotos
● Uses ESIL to reference ALL strings
● Very verbose, but useful when others fail
● Very fast, perfect for grepping around

r2dec

Decompiler for r2 written in Javascript

● Quite correct, few optimization passes
● Supports most common archs
● Actively maintained and developed
● Available in the pdd command
● By @wargio/deroad

r2ghidra

Native plugin linking to the ghidra-native fork of
ghidra’s decompiler (only c++ code, no java).

● Not aligned with r2 analysis
● Good results sometimes, but misses lot of info
● Looking for maintainers

decai

Decompiler based on R2AI:

● Takes N decompilations as input
● Generates better output combining them
● Guess variable names and arguments
● Best local: granite, mistral and llama
● Best remote: Claude

Exercise

● Install r2dec, r2ghidra, decai
● Try them on different functions of different binaries
● Understand the differences

Debugging
And Tracing

—

● Manipulating
program execution
at runtime

Low Level Debugging

R2 is a tool for reversing, not for developers

● No plan to replace gdb/lldb
● It’s not a source debugger.

But it’s great when you don’t have the source

● Easy to script and automate

$ r2 -d [program|pid]

Backends

The native backend works on all major platforms!

● Linux, macOS, iOS, Android, Windows, *BSD, !!

But sometimes we need to do remote debugging

● Over TCP / JTAG, use the gdb:// protocol

Windbg / gdbio / qemu / bochs support..

Registers

Showing and changing register values

> dr, dr=, dr 32, dr rax

● Telescoping with drr

We can also telescope memory with pxr@r:SP

● Register profiles with drp

Breakpoints

Use the db command for that..

No need to use a temporal breakpoint. You can
continue until address with dcu

With some archs sometimes you may need to use:

● e dbg.hwbp

Memory Maps

At runtime, the address space is not fully mapped

● Use dm and dmm to understand the layout

Identify regions by permissions and name

● Where’s the stack, inspect it with pxr

Heap Structures

Heap memory is structured in a way that can be
parsed and detect corruptions, which is useful for
analyzing and exploiting buffer overflow vulnerabilities.

● Check the dmh command

Exercise

Start debugging a program, change control flow by
changing the program counter.

● Manipulate register values: dr, dr=
● Identify location with maps: dm
● Continue execution: db, db-* , ds, dc

Scripting
—

Automate actions,
Solve boring tasks
Quickly

The Basics

We know how to use the shell.

● r2 -i or the . command.

What about running a command and capturing the
output displayed in return?

● That’s called r2pipe

We can also use bindings to the native API (rlang)

Supported Languages

For r2pipe you can literally use ANY language

● Python, JavaScript, Ruby, Nim, Scheme, …

Even native!

● C, Vala, Rust, Swift, Zig, D, …

Why Javascript

Is the only scripting language that is widely available,
uses no setjmp and it’s very easy to use and many
languages have it as a target for transpilation.

● Nim, TypeScript, V, Scala, Dart, LUA, Scheme,...

We ship quickjs, scripts must be named .r2.js

R2Pipe

Example using the basic r2pipe api

R2Pipe Backends

R2Pipe can be used in different environments:

● Spawn + pipes
● Spawn + stdio
● Fork current session + pipes (#!pipe)
● Talking to an HTTP websever /cmd
● Dlopen RCore API

R2Pipe JSON (cmdj)

Appending j to any command in r2 shows JSON.

Using the cmdj methods returns an object.

We can autogenerate object schemas and have
autocompletion in our favourite editor!

R2Pipe cmd vs call

Running a command implies too much internal work
sometimes that we can bypass with .call()

● Don't parse special characters
● Avoid command injection
● Support temporal seek .callAt()
● Faster execution for large scripts

Performance

Who said speed?

Sometimes we don’t need the output

● Use cmd0 or call0 commands

r2papi

r2pipe

R2 scripts

C API

R2Pipe2

Introduced in r2-5.9.x, still under development and not
fully handled; needs more testing, feedback and
contributions.

● Protocol is there
● Fully compatible with r2pipe
● Uses the { command from r2
● Captures stderr and return code and value

R2Papi

What about having an idiomatic and high level API on
top of the r2pipe primitive?

● Similar to the Frida API (NativePointer, ..)

r2skel

This project is a collection of template source codes in
different languages for starting new plugins or scripts
for radare2.

$ r2pm -ci r2skel

$ r2pm -r r2skel ..

Exercise

Install r2skel and write a core plugin in your language
of choice to add a new command in the r2 shell.

Choose wisely!

● C, Python, R2JS

Plugins
—

● r2pm, installing
plugins to extend
the capabilities.

Extensibility

We are about to reach the end of this talk, but we
won’t be over without having a look at all the
awesome tools that can be integrated!

● Use r2pm to search and install them!

r2frida

The best way to combine dynamic instrumentation
with static analysis, a powerful shell on top of the
tracing capabilities of Frida.

$ r2 frida://0

r2ida

Export comments and function details from IDA to r2

● Get an r2 shell inside IDA
● Looking for contributors!
● Who uses IDA?

NOTE: r2ForGhidra

r2yara

Useful for crypto constant and malware analysis

● Create Rules with patterns
○ Integrated with r2 analysis and metadata

● Load them into memory
● Scan for patterns in memory or file

radius2

Symbolic Execution Solver (in Rust) on top of ESIL.

● Remake of esilsolver (z3py)
● Can resolve conditions that must be matched to

reach a specific address
● Resolve passwords from crackmes, ..

r2poke

GNU/POKE is a programming language for describing
binary files. Exposes a shell with powerful scripting
capabilities.

● Integrates well with radare2
● Can run r2 commands from POKE
● Run POKE expressions in the R2 shell

r2angr

Integrate Angr decompiler with radare2

● Looking for contributors and better integration
● A bit slow the first run needs to analyze the whole

binary

r2ai

Integrating language model capabilities within r2.

● Supports local ones with llama
● Remote OpenAI / Anthropic / Gemini / …

I’ll be speaking tomorrow about it!

r2sarif

The standard file format to exchange findings from
different source and binary analysis tools.

● Uses JSON format
● Well structured and extensible
● Inspect vulnerabilities found by other tools

r2diaphora

A fork of the Diaphora tool from Joxean for IDA, but
maintained to work with radare2.

● Designed to work on scale
● Battle tested on fuzzed and malware binaries
● Looking for contributors!
● No SQLITE backend
● Needs a GUI

Exercise

Choose your favourite plugins and install them!

$ r2pm -ci r2ghidra r2dec r2yara r2svd

Continue
Learning

—

● Reference Books,
Chats, Blogs, Videos,
Conferences

Crackmes vs Projects

Do you have a project in mind?

● Go for it!

If you are used to other tools, make them play well
with r2. It’s easy and gives you lots of capabilities

Source

As I use to say, the best documentation is the source!

● Read as much code as you can, and when you are
tired write more or refactor it!

● Coding plugins for r2, programming tools on top of
it, or adding new commands are great ways to
learn more about r2

● Fix bugs, add tests, open tickets!

r2book

Yep!

We have an official book and it’s opensource

https://github.com/radareorg/radare2-book

Feel free to contribute and make it better!

● It’s also available as an r2 plugin

Chats!

Join our Discord, Telegram or Matrix chats!

● We have pancakes .. i mean cookies!

The Fediverse!

Follow @radareorg@infosec.exchange

(And if you’re still not in the fediverse, it’s never too late!)

Exercise: Attend r2con!

Our periodic conference where r2 users, developers
and hackers around the world meet in person!

● Barcelona, November 8th-9th
● Online Sunday 10th

But will be streamed and recorded!

https://rada.re/con

Questions?

